

Kube: Pythonic Kubernetes API Wrapper

Kube [https://bitbucket.org/cobeio/kube] is an opinionated, Python [http://python.org] wrapper around the Kubernetes [http://kubernetes.io] API that
enables you to interact with and manage your Kubernetes cluster. Kube’s
primary design goal is to enable easy access to all features offered by the
Kubernetes API using the Python language, while hiding Kubernetes API
peculiarities. The result is a consistent and easy to use pythonic API.

Currently, Kube [https://bitbucket.org/cobeio/kube] has the following capabilities:

	Major resources wrapped: Nodes, Namespaces, Pods,
ReplicaSets, ReplicationControllers, Daemonsets, Deployments, Services,
Secrets.

	Good labelling support, you can read and modify resource labels.

	Blocking and non-blocking support for the WATCH API.

	Low-level access to the Kubernetes API.

At the moment creating, deleting and modifying resources in general must be
done via the low level access Kube [https://bitbucket.org/cobeio/kube] provides to the actual Kubernetes API
however these features are in the process of being added.

Contents:

	Quickstart
	Cluster

	Views and Items

	Installation
	Dependencies

	Concepts and Terminology
	Kubernetes API concepts from 10,000 feet

	How Kube maps these concepts

	How Kube handles Kubernetes API versions

	Additional Terminology

	Clusters

	Resource Views and Resource Items

	Using Resource Labels

	Using Resource Filters

	Using Resource Watchers

	Testing Kube

	API Reference
	Exceptions

	Cluster

	Resources Interface

	Resource Items Interface

	Nodes

	Namespaces

	ReplicaSets

	ReplicationControllers

	Daemonsets

	Deployments

	Pods

	Services

	Secrets

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

Before you start you need to make the Kubernetes API available via a proxy,
this is the officially recommended [http://kubernetes.io/docs/user-guide/accessing-the-cluster/] method to connect and the only one
supported by kube. To do this, simply run kubectl proxy on the
localhost and kube will use that connection, for example:

$ kubectl proxy
Starting to serve on localhost:8001

When running your kube code in an actual Kubernetes cluster you can
simply run the kubectl proxy in a container in the same pod that your
kube code is running in. Finally, if you haven’t already done so,
refer to the Installation chapter and install kube.

Cluster

The main entry point provided by kube is the kube.Cluster
class. Creating an instance of this class is central to gaining access to
the objects inside your Kubernetes cluster. The kube.Cluster class
assumes the default endpoint used by kubectl proxy
(i.e. http://localhost:8001/api/) so you can simply create an instance as
follows:

import kube

cluster = kube.Cluster()

However if you’re running your proxy at a non-default endpoint then you should
instance your kube.Cluster class using the url parameter as follows:

cluster = kube.Cluster(url='http://localhost:8080/api')

Pretty much all the ways in which you would want to interact with the
Kubernetes API are supported by kube, however a cluster provides
a kube.APIServerProxy instance via the kube.Cluster.proxy
attribute. This provides low-level access to the Kubernetes cluster and can
be useful to manage API objects, or access objects not yet wrapped by
kube.

Views and Items

kube has two important concepts: views and items. All API objects in
Kubernetes have a kind, and views provide access to Kubernetes resources
whose kind ends in List e.g. PodList or NodeList. Items,
on the other hand, provide access to the individual resource items
themselves, e.g. a Pod or a Node.

The kube.Cluster instance has appropriately named attributes
representing the views that provide access to the Kubernetes resources for
that cluster. So for example, to fetch the ReplicaSet named
auth-v3 in the default namespace you can simply use code like this:

>>> rs = cluster.replicasets.fetch('auth-v3', namespace='default')
>>> assert rs.meta.name == 'auth-v3'
>>> assert rs.meta.namespace = 'default'
>>> assert rs.kind is kube.Kind.ReplicaSet

A view is also an iterator of all the resource items it provides
access to. So for example, retrieving the names of all the namespaces
in your cluster can be done using a simple list comprehension:

>>> ns_names = [ns.meta.name for ns in cluster.namespaces]
>>> assert 'default' in ns_names

Note

Kubernetes versions all of its API objects. Whenever anything changes,
the version for the resource is updated. Resource items returned by
kube views are snapshots of a resource item’s state at a certain
version.

On that note, consider this:

>>> cluster = kube.Cluster()
>>> print([node.meta.version for node in cluster.nodes])
['6434482', '6434483', '6434481']
>>> # A bit later
...
>>> print([node.meta.version for node in cluster.nodes])
['6434485', '6434486', '6434484']

Note

This is just to show you that the metadata attribute carries the resource
version and that it is updated when the resource changes. However
comparing versions is not very useful as they are opaque blobs. It is
advised that you compare resource items directly.

As you have probably noticed, all resource items have a meta attribute
and the version of a resource item is kept in meta.version. The meta
attribute is an instance of the kube.ObjectMeta class and provides
convenient access to a Kubernetes resource item’s metadata. For example,
it provides access to the labels defined for a resource item:

>>> rs = cluster.replicasets.fetch('auth-v3', namespace='default')
>>> if 'mylabel' not in rs.meta.labels:
... curr_rs = rs.meta.labels.set('mylabel', 'value')
... assert curr_rs.meta.labels['mylabel'] == 'value'
... print(rs.meta.version)
... print(curr_rs.meta.version)
... assert rs != curr_rs
...
6530399
6530416

There are a few points to note from the above:

	The labels attribute, an instance of kube.ResourceLabels,
behaves as a mapping. Both the keys and values are strings. Note however
that the mapping is immutable.

	To modify a resource item, kube will always require that you call a
method.

	Any method which modifies a resource item will always return an
instance of the newest revision of that resource item (i.e. curr_rs).

Almost all resource items have a specification and status associated with
them. The specification is a copy of the raw data representing the resource,
which for example, could be used to re-create it. The specification is
accessible in raw dict form using an item’s kube.ItemABC.spec() method.

The resource item’s status is exposed directly on appropriately named
attributes. So for example:

>>> assert rs.spec()['replicas'] == rs.observed_replicas

That should be enough to get you going, but do read on. The remainder of
this documentation describes kube concepts and terminology in more detail,
provides detailed information on using kube in its entirety and gives a
full API reference.

Installation

Kube requires Python 3. The current release is published on PyPI [https://pypi.python.org/pypi/kube] and
the easiest way to install it is to use pip as follows:

$ pip install kube

Dependencies

The following libraries will be automatically installed from PyPI:

	requests >=2.5.0,<3.0.0

Concepts and Terminology

Kubernetes is a large and complex system and the API (and related APIs in the
ecosystem) expose it in all of its glory. Consequently the Kubernetes API
can sometimes seem a bit confusing. Kube’s remit is to try and insulate
the developer from most of this complexity and provide a pythonic, intuitive
interface to work with, while adhering to the main Kubernetes API concepts.
This chapter outlines these concepts, and in addition describes how and where
kube fits in. Throughout the documentation we will endeavour to
consistently use the terminology defined here.

If you are interested in getting a deeper understanding of the concepts
employed by the Kubernetes API (and we strongly recommend that you do) then
the Kubernetes API conventions [https://github.com/kubernetes/kubernetes/blob/release-1.2/docs/devel/api-conventions.md] document is a must read.

Kubernetes API concepts from 10,000 feet

Principally, the Kubernetes API defines the following terms:

	Kind: The name of a particular object schema (e.g. Node or Pod
kinds that have different attributes and properties).

	Resource: A representation of a system entity, sent or retrieved as
JSON via HTTP to the server. Resources are represented as:

	Collections: A list of resources of the same type.

	Elements: An individual resource.

Resources typically deal in data of a particular kind. For example, the
kind Pod (a kind of resource element) is exposed as a pods resource
(a resource collection with a kind of PodList) that allows end users to
create, update, and delete pods. Kubernetes maintains a convention that
resource collection names are all lowercase and plural, whereas kinds (that
are the types of resource elements) are CamelCase and singular. Here are
some resource kinds:

	Collections: e.g. PodList, ServiceList, NodeList

	Elements: e.g. Pod, Service, Node

Additionally, by convention the Kubernetes API makes a distinction [https://github.com/kubernetes/kubernetes/blob/release-1.2/docs/devel/api-conventions.md#spec-and-status] between
the specification of an object, and the status of an object at the
current time.

The specification is a complete description of an object’s desired state,
including configuration settings provided by the user, default values
expanded by the system, and properties initialized or otherwise changed after
creation by other ecosystem components (e.g., schedulers, auto-scalers),
and is persisted in stable storage with the API object. If the specification
is deleted, the object will be purged from the system.

The status summarises the current state of the object in the system, and
is usually persisted with the object by an automated processes but may be
generated on the fly.

When a new version of an object is POSTed or PUT, the specification is
updated and available immediately. Over time the system will work to bring
the status into line with the specification. The system will drive
toward the most recent “spec” regardless of previous versions of that stanza.

In other words Kubernetes’ behavior is level-based rather than edge-based
which enables robust behavior in the presence of missed intermediate state
changes.

How Kube maps these concepts

Views and Items

kube maintains two important concepts that support the principle
Kubernetes API concepts described above: views and items. As discussed
all API objects in Kubernetes have a kind, and views provide access to
Kubernetes resources whose kind ends in List e.g. PodList or
NodeList. Note however that a kube View is not exactly the same as a
resource collection; resource collections on the K8s API carry metadata and
are versioned, this detail is not exposed in kube views.

Items, on the other hand, provide access to the individual resource items
(elements) themselves, e.g. a Pod or a Node.

All kube views and items implement the abstract base classes
kube.ViewABC and kube.ItemABC respectively, relating to
the Collections and Elements concepts prescribed by the Kubernetes API.
Consequently, View and Item instances that represent them all have a kind
property. Additionally:

	As a minimum, Views have a:

	fetch method to get an Item.

	filter method to get a subset of the items in a resource collection.

	watch method to get an iterator that will provide access to
watch events that represent updates to items belonging to the view.

	As a minimum, Items have a:

	fetch method to get the latest version of an Item.

	spec method that represents the specification of the Item.

	meta property that provides access to an Item’s metadata.

	watch method to get an iterator that will provide access to any
watch events that represent updates to the item.

	resource property that provides name of the Kubernetes API resource.

So as one can see, an Item’s specification is available via any
Item instance’s spec method. An Item’s status however, is represented
by a selection attributes particular to the kind of Item. For example,
in the case of a Pod, attributes like; kube.PodItem.phase,
kube.PodItem.start_time, kube.PodItem.message.

How Kube handles Kubernetes API versions

kube maintains a list of API base paths for present and past API
versions for each resource type. When iterating over items in a kube
view, kube uses the most recent API version base path that is found to
be available.

Additional Terminology

Cluster

A Kubernetes cluster is a set of physical or virtual machines and
other infrastructure which runs containerised applications. You would
normally interact with the apiserver running on the Kubernetes master
node. This is represented with kube‘s entry-point class
kube.Cluster, an instance of which is used to access,
among other things, Views representing resource collections.

API object

The Kubernetes system is almost entirely controllable via the HTTP
ReSTful API which provides the standard HTTP methods to control the API
objects using various HTTP verbs. We use the general term API object to
refer to collections (Views) or an element (Item), that is any object
which can be retrieved using HTTP GET and has a kind in the returned JSON.

Object Metadata

The Kubernetes API exposes metadata for API Objects. This includes
information like the namespace the object resides in, its name, any labels
set and their values, version, uid and when the object was created. kube
carries much of this information for Items but as discussed,
however Views are not exactly the same as collections and only expose
properties for particular metadata items, e.g. namespace.

Global Views

Views come in two flavours: global views and views bound to a namespace.
Instances of global views are directly accessible from an attribute on a
kube.Cluster instance. A global view will only contain all resource
items of a certain kind that exist in the cluster, regardless of the namespace
they reside in. When using a view bound to a namespace only the resource items
residing in the given namespace are accessible.

Node

A Node is a worker machine in a Kubernetes Cluster. A Node may be a
virtual or physical machine, depending on the cluster. kube exposes a
cluster’s NodeList resource via the kube.Cluster.nodes view. Each
item in the view is a kube.NodeItem instance.

Namespace

Kubernetes supports multiple virtual clusters backed by the same physical
cluster. These virtual clusters are called namespaces. kube exposes a
cluster’s NamespaceList resource via the kube.Cluster.namespaces
view. Each item in the view is a kube.NamespaceItem instance.
Furthermore kube exposes an API object’s namespace (if defined) on an
instance property. For Views this is on the namespace property, for
Items this in on the meta.namespace property.

Replication Controller

A ReplicationController ensures that a specified number of pod “replicas”
are running at any one time. In other words, a ReplicationController makes
sure that a pod or homogeneous set of pods are always up and available. If
there are too many pods, it will kill some. If there are too few, the
ReplicationController will start more. Unlike manually created pods, the
pods maintained by a ReplicationController are automatically replaced if
they fail, get deleted, or are terminated. kube exposes a
cluster’s ReplicationControllerList resource via the
Cluster.replicationcontrollers view. Each item in the view is a
kube.ReplicationControllerItem instance.

ReplicaSet

A ReplicaSet is the next-generation Replication Controller. The only
difference between a ReplicaSet and a Replication Controller is the
selector support. kube only has views and items representing
ReplicaSetLists and ReplicaSet respectively. kube exposes a
cluster’s ReplicaSetList resource via the Cluster.replicasets
view. Each item in the view is a kube.ReplicaSetItem instance.

Daemonset

A DaemonSet ensures that all (or some) nodes run a copy of a pod. As nodes
are added to the cluster, pods are added to them. As nodes are removed from
the cluster, those pods are garbage collected. Deleting a DaemonSet will
clean up the pods it created. kube exposes a cluster’s
DaemonSetList resource via the Cluster.daemonsets
view. Each item in the view is a kube.DaemonSetItem instance.

Deployment

A Deployment provides declarative updates for Pods and Replica Sets (the
next-generation Replication Controller). You only need to describe the
desired state in a Deployment object, and the Deployment controller will
change the actual state to the desired state at a controlled rate for you.
You can define Deployments to create new resources, or replace existing ones
by new ones. kube exposes a cluster’s DeploymentList resource via
the Cluster.deployments view. Each item in the view is a
kube.DeploymentItem instance.

Pod

A Pod is the smallest deployable unit of computing that can be created and
managed in Kubernetes. It is a group of one or more containers (such as
Docker containers), the shared storage for those containers, and options
about how to run them. Pods model an application-specific “logical host”.
kube exposes a cluster’s PodList resource via the Cluster.pods
view. Each item in the view is a kube.PodItem instance.

Container

Containers (for example Docker Containers) are run-times that execute on a
Node under the shared context of a Pod. The Kubernetes API doesn’t
represent containers directly as API Objects but indirectly through a Pod’s
specification and status. kube wraps a Pod’s container information
up in the kube.PodItem.containers property which provides a list of
kube.Container instances that themselves have properties that are
kube.ContainerState instances for the current and last known
container state.

Service

A Kubernetes Service is an abstraction which defines a logical set of
fungible Pods and a policy by which to access them. The set of Pods
targeted by a Service is usually determined by a Label Selector. kube
exposes a cluster’s ServiceList resource via the kube.Cluster.services
view. Each item in the view is a kube.ServiceItem instance.

Secret

A Secret is an API object that contains a small amount of sensitive data
such as a password, a token, or a key. kube exposes a cluster’s
SecretList resource via the kube.Cluster.secrets view. Each item in
the view is a kube.SecretItem instance.

Watching for changes

kube supports the Kubernetes API Watch capability. All Views and Items
provided by kube have a watch method that returns an iterator of
kube.WatchEvent instances. Whenever one of the resources in a
view changes, or a watched Item changes, a kube.WatchEvent instance
is yielded.

Clusters

Resource Views and Resource Items

Using Resource Labels

Using Resource Filters

Using Resource Watchers

Testing Kube

API Reference

The full API documentation.

Exceptions

There are a number of common exceptions used.

	
exception kube.KubeError

	The base class for all custom exceptions used by the the kube
library.

	
exception kube.APIError

	This is an exception which gets raised whenever there is a problem
communicating with the Kubernetes API server or if the server
returns the wrong HTTP status code.

	
message

	An optional custom message for the exception.

	
response

	The requests.Response object of the failed API server
communication.

	
status_code

	The HTTP status code of the failed response from the API
server. This is a shortcut to the status_code attribute of
the response object itself.

	
exception kube.StatusError

	All resource items, represented by concrete instances of
ItemABC, have a number of attributes which represent the
status of the resource item. Not all status items are always
available depending on the state of the resource item. If a status
attribute is not available then this exception is used.

	
exception kube.NamespaceError

	This represents the use of an invalid namespace. Some resources do
not support namespaces, while others require a namespace. If the
namespace use was wrong this exception will be raised.

Cluster

The cluster class is the global entry point to a Kubernetes API
server. It holds some resources for the cluster it connects to.

Mostly this provides access to the API objects via the ref:views
present as attributes.

	
class kube.Cluster(url='http://localhost:8001/')

	A Kubernetes cluster.

The entry point to control a Kubernetes cluster. There is only one
connection mechanism, which is via a local API server proxy. This
is normally achieved by running kubectl proxy.

	Parameters:	url (str) – The URL of the API server.

The default of the url parameter coincides with the defaults used
by kubectl proxy so will usually be the correct value.

The cluster instance can also be used as a context manager. When
used like this close() will be called automatically when the
context manager exits.

	
proxy

	A APIServerProxy instance for this cluster. This
provides low-level access to the API server if you need it.

	
nodes

	A global NodeView instance providing convenient
access to cluster nodes.

	
namespaces

	A global NamespaceView instance providing
convenient access to the namespaces present in the cluster.

	
replicasets

	A global ReplicaSetView instance providing
convenient access to all ReplicaSet objects present in the
cluster. This view is not bound to a particular namespace.

	
replicationcontrollers

	A global ReplicationControllerView instance providing
convenient access to all ReplicationController objects present
in the cluster. This view is not bound to a particular namespace.

	
daemonsets

	A global DaemonSetView instance providing convenient access
to all DaemonSet objects present in the cluster. This view is
not bound to a particular namespace.

	
deployments

	A global DeploymentView instance providing convenient access
to all Deployment objects present in the cluster. This view is
not bound to a particular namespace.

	
pods

	A global PodView instance providing convenient
access to all Pod objects present in the cluster. This
view is not bound to a particular namespace.

	
services

	A global ServiceView instance providing convenient
access to all Service objects present in the cluster.
This view is not bound to a particular namespace.

	
secrets

	A global SecretView instance providing convenient
access to all Secret objects present in the cluster.
This view is not bound to a particular namespace.

	
close()

	Close and clean up underlying resources.

	
create(data, namespace=None)

	Create a new resource item.

	Parameters:	
	data (dict) – The specification to create the resource from,
this must include the apiVersion, kind,
metadata and spec fields. It is usually simply the
de-serialised YAML but allows you to insert template
processing if you require so.

	namespace (str) – Create the resource item in the given
namespace. If the spec includes a namespace this
namespace must match or an exception will be raised.

	Returns:	The newly created item.

	Return type:	A kube.ViewABC instance of the right type
according to the kind of resource item created based on the
data in the spec.

	Raises:	
	kube.APIError – For errors from the k8s API server.

	kube.KubeError – If the spec is incomplete or the kind
is unknown.

	
classmethod kindimpl(kind)

	Return the class which implements the resource kind.

	Parameters:	kind (kube.Kind) – The kube.Kind instance.

	Returns:	A class implementing either kube.ViewABC or
kube.ItemABC depending on the kind.

	Raises:	ValueError – If the kind is not known.

APIServerProxy

This provides low-level access to the Kubernetes cluster. It can be
useful to interact with API objects not yet wrapped by the library.

	
class kube.APIServerProxy(base_url='http://localhost:8001/')

	Helper class to directly communicate with the API server.

Since most classes need to communicate with the Kubernetes
cluster’s API server in a common way, this class helps take care of
the common logic. It also keeps the requests session alive to
enable connection pooling to the API server.

	Parameters:	base_url (str) – The URL of the API, not including the API version.

Most methods take a variable-length path argument which is used
to make up the URL queried. These parts are joined together and
attached to the base URL configured on the class (e.g.
http://localhost:8001/) using the urljoin() method. Thus, to
query a namespace at http://localhost:8001/api/v1/namespaces/default,
you would use ['api/v1', 'namespace', 'default'] as path. Likewise,
['api/v1', 'namespace', 'default', 'pods', 'foo'] as path would
result in a query to
http://localhost:8001/api/v1/namespaces/default/pods/foo.

It is also possible to use the full URL path instead as a single
argument. This is useful when using the selfLink metadata from
an API object. So using ['/api/v1/namespaces/default'] as
path would also result in a URL of
http://localhost:8001/api/v1/namespaces/default.

	
close()

	Close underlying connections.

Once the proxy has been closed then the it can no longer be used
to issue further requests.

	
delete(*path, json=None, **params)

	HTTP DELETE to the relative path on the API server.

	Parameters:	
	path (str) – Individual relative path components, they will be
joined using urljoin().

	json (collections.abc.Mapping) – The body, which will be JSON-encoded before
posting.

	params (str) – Extra query parameters for the URL of the
DELETE request.

	Returns:	The decoded JSON data.

	Return type:	pyrsistent.PMap

	Raises:	kube.APIError – If the response status is not 200 OK.

	
get(*path, **params)

	HTTP GET the path from the API server.

	Parameters:	
	path (str) – Individual API path components, they will
be joined using “/”. None of the path components should
include a “/” separator themselves, other than the first
component, the API path, which may.

	params (dict) – Extra query parameters for the URL of the
GET request as a dictionary of strings.

	Returns:	The decoded JSON data.

	Return type:	pyrsistent.PMap

	Raises:	kube.APIError – If the response status is not 200 OK.

	
patch(*path, patch=None)

	HTTP PATCH as application/strategic-merge-patch+json.

This allows using the Strategic Merge Patch to patch a
resource on the Kubernetes API server.

	Parameters:	
	path (str) – Individual relative path components, they
will be joined using “/”. None of the path components
should include a “/” separator themselves, other than the first
component, the API path, which may - unless you only
provide one component, which will be joined to the base URL
using urllib.parse.urljoin(). This case can be
useful to use the links provided by the API itself
directly, e.g. from a resource’s metadata.selfLink
field.

	patch (dict) – The decoded JSON object with the patch
data.

	Returns:	The decoded JSON object of the resource after
applying the patch.

	Raises:	APIError – If the response status is not 200 OK.

	
post(*path, json=None, **params)

	HTTP POST to the relative path on the API server.

	Parameters:	
	path (str) – Individual relative path components, they will be
joined using urljoin().

	json (collections.abc.Mapping) – The body to post, which will be JSON-encoded
before posting.

	params (str) – Extra query parameters for the URL of the POST
request.

	Returns:	The decoded JSON data.

	Return type:	pyrsistent.PMap

	Raises:	kube.APIError – If the response status is not 201
Created.

	
urljoin(*path)

	Wrapper around urllib.parse.urljoin for the configured base URL.

	Parameters:	path – Individual relative path components, they will be
joined using “/”. None of the path components should
include a “/” separator themselves, other than the first
component, the API path, which may.

	
watch(*path, version=None, fields=None)

	Watch a list resource for events.

This issues a request to the API with the watch query
string parameter set to true which returns a chunked
response. An iterator is returned which continuously reads
from the response, yielding received lines as bytes.

	Parameters:	
	path – The URL path to the resource to watch. See
urljoin().

	version (str) – The resource version to start watching from.

	fields (dict) – A dict of fields which must match their
values. This is a limited form of the full fieldSelector
format, it is limited because filtering is done at client
side for consistency.

	Returns:	An special iterator which allows non-blocking
iterating using a .next(timeout) method. Using it as a
normal iterator will result in blocking behaviour.

	Return type:	kube._watch.JSONWatcher.

	Raises:	APIError – If there is a problem with the API server.

Resources Interface

ViewABC

Views are central to how the kube API works and are how you get hold
of resource items. They give you a view into the resource items part
which are part of the resource. Views are implemented in concrete
classes for each resource type which is wrapped by kube. The view API
presented in this abstract base class which all the concrete views
have to implement and provides a consistent API.

Currently views come in two flavours: global views and views bound to
a namespace. Instances of global views are directly accessible from
attributes on the Cluster instance. When using a global view
it will contain all resource items of a certain kind which exist in
the cluster, regardless of the namespace they reside in. When using a
view bound to a namespace only the resource items residing in the
given namespace are accessible.

	
class kube.ViewABC(cluster, namespace=None)

	Represents a view to a collection of resources.

All top-level resources in Kubernetes have a collection, resources
of a *List kind, with some common functionality. This ABC
defines views to provide access to resources in collections in a
uniform way. Note that a view is not the same as the collection
resource, e.g. collections resources have some metadata associated
with them and exist at a particular point in time, they have a
metadata.resourceVersion, which views do not have.

It is always possible to create an instance of this without
needing to do any requests to the real Kubernetes cluster.

	Parameters:	
	cluster (kube.Cluster) – The cluster this resource list is part of.

	namespace (str) – The optional namespace this resource list is
part of. If the resource list is not part of a namespace this
will be None which means it will be a view to all resources
of a certain type, regardless of their namespace.

	Raises:	kube.NamespaceError – When a namespace is provided but the
resource does not support one.

	
api_paths

	The list of possible Kubernetes API version base paths for resource.

This is a list of the API base path string for each of the
existing API versions that could be used in the construction of the
API endpoint for a resource, if available. For example,
['api/v1', '/apis/extensions/v1beta1']. They are listed in
reverse chronological order, the most recent API version appearing
first. kube uses the list to establish and use the most recent API
version available.

	
cluster

	The kube.Cluster instance this resource is bound to.

	
fetch(name, namespace=None)

	Retrieve the current version of a single resource item by name.

If the view itself is associated with a namespace,
self.namespace is not None, then this will default to
fetching the resource item from this namespace. If the view
is not associated with a namespace, self.namespace is
None, and the resource requires a namespace then a
kube.NamespaceError is raised. Note that the
default namespace is not automatically used in this case.

	Parameters:	
	name (str) – The name of the resource.

	namespace (str) – The namespace to fetch the resource
from.

	Returns:	A single instance representing the resource.

	Raises:	
	LookupError – If the resource does not exist.

	kube.NamespaceError – For an invalid namespace, either
because the namespace is required for this resource but not
provided or the resource does not support namespaces and
one was provided.

	kube.APIError – For errors from the k8s API server.

	
filter(*, labels=None, fields=None)

	Return an iterable of a subset of the resources.

	Parameters:	
	labels (dict or str) – A label selector expression. This can either
be a dictionary with labels which must match exactly, or a
string label expression as understood by k8s itself.

	fields (dict or str) – A field selector expression. This can either
be a dictionary with fields which must match exactly, or a
string field selector as understood by k8s itself.

	Returns:	An iterator of kube.ItemABC instances of
the correct type for the resrouce which match the given
selector.

	Raises:	
	ValueError – If an empty selector is used. An empty
selector is almost certainly not what you want. Kubernetes
treats an empty selector as all items and treats a
null selector as no items.

	kube.APIError – For errors from the k8s API server.

	
kind

	The kind of the underlying Kubernetes resource.

This is a kube.Kind enum.

This should be implemented as a static attribute since it
needs to be available on the class as well as on the instance.

	
namespace

	The optional namespace this view is bound to.

If the view is not bound to a namespace this will be None,
including for resources which do not support namespaces.

	
resource

	The name of the Kubernetes API resource.

The resource name is used in the construction of the API
endpoint, e.g. for the API endpoint
/namespaces/default/pods/ the resource name is pods.
The resource name is identical for both the resource as well
as the resource item, e.g. both objects with PodList and
Pod as kind will have a resource name of pods.

This should be implemented as a static attribute since it
needs to be available on the class as well as on the instance.

	
watch()

	Watch for changes to any of the resources in the view.

Whenever one of the resources in the view changes a new
kube.WatchEvent instance is yielded. You can
currently not control from “when” resources are being watched,
other then from “now”. So be aware of any race conditions
with watching.

	Returns:	An iterator of kube.WatchEvent instances.

	Raises:	
	kube.NamespaceError – Whe the namespace no longer
exists.

	kube.APIError – For errors from the k8s API server.

ResourceWatcher

A ResourceWatcher is used to watch resources and resource
items. It should never be created directly but is instead returned by
the ViewABC.watch() and ItemABC.watch() methods.

This class is also a context manager as it holds open active socket
connections to the API server. On exiting the context manager the
connections are closed. Typical usage would be:

cluster = kube.Cluster()
with cluster.pods.watch() as watcher:
 for event in watcher:
 print(event)

	
class kube.ResourceWatcher(cluster, jsonwatcher, itemcls)

	Watcher for a resource.

This is an iterator yielding watch events in either a blocking or
non-blocking way, for non-blocking use .next(timeout=0). It
uses a JSONWatcher instance for retrieving the actual
events, which must be configured correctly to return events for
the same resource as this watcher is for.

	Parameters:	
	cluster (kube.Cluster) – The cluster instance.

	jsonwatcher (JSONWatcher) – A correctly configured watcher instance which
yields the decoded JSON objects.

	itemcls (A callable, usually a class.) – A constructor for the resource item being watched.

	
close()

	Close the iterator and release it’s resources.

This releases the underlying socket.

	
next(*, timeout=None)

	Return the next watch event.

	Parameters:	timeout (int or float) – The maximum time to wait for a new event. Not
specifying this will block forever until a new event
arrives, otherwise a TimeoutError is raised if no
new event was received in time.

	Raises:	TimeoutError – When no new event is available after the
specified timeout.

WatchEvent

The namedtuple yielded by a ResourceWatcher.

	
class kube.WatchEvent

	Events returned by the ResourceWatcher iterator, this is a
namedtuple with the following fields:

	
evtype [field 0]

	The first field of the tuple, representing the type of event, a
kube.WatchEventType enum instance.

	
item [field 1]

	The second field of the tuple, representing the API object
itself. This will be a concrete instance of ItemABC.

	
MODIFIED

	Shortcut to kube.WatchEventType.MODIFIED.

	
ADDED

	Shortcut to kube.WatchEventType.ADDED.

	
DELETED

	Shortcut to kube.WatchEventType.DELETED.

	
ERROR

	Shortcut to kube.WatchEventType.ERROR.

WatchEventType

The types of watch events as an enum.

	
class kube.WatchEventType

	
	
MODIFIED

	

	
ADDED

	

	
DELETED

	

	
ERROR

	

Resource Items Interface

ItemABC

Individual resource items are always represented by a class
implementing the ItemABC interface. Like with views each
resource item is implemented in it’s own concrete class but the
abstract base class gives a consistent API.

Instances of an item represent the state of that resource item as a
snaphot in time. All API objects in a Kubernetes cluster have a
resource version associated with them and this particular version is
what is represented by an item instance and thus an item instance is
immutable. Items can and do implement methods which change the
state of the resource item, in these cases a new instance of the item
is returned by the method, representing the resource item in the state
after the mutations have happened.

	
class kube.ItemABC(cluster, raw)

	Representation for a kubernetes resource.

This is the interface all resource items must implement.

	Parameters:	
	cluster (kube.Cluster) – The cluster this resource is bound to.

	raw (dict) – The decoded JSON representing the resource.

	
api_paths

	The list of possible Kubernetes API version base paths for resource.

This is a list of the API base path string for each of the
existing API versions that could be used in the construction of the
API endpoint for a resource, if available. For example,
['api/v1', '/apis/extensions/v1beta1']. They are listed in
reverse chronological order, the most recent API version appearing
first. kube uses the list to establish and use the most recent API
version available.

	
cluster

	The kube.Cluster instance this resource is bound to.

	
delete()

	Delete the resource item.

	Return type:	None

	Raises:	APIError – For errors from the k8s API server.

	
fetch()

	Fetch the current version of the resource item.

This will return a new instance of the current resource item
at it’s latest version. This is useful to see any changes
made to the object since it was last retrieved.

	Returns:	An instance of the relevant ItemABC
subclass.

	Raises:	kube.APIError – For errors from the k8s API server.

	
kind

	The Kubernetes resource kind of the resource.

This is a kube.Kind enum.

This should be implemented as a static attribute since it
needs to be available on the class as well as on the instance.

	
meta

	The resource’s metadata as a kube.ObjectMeta instance.

	
raw

	The raw decoded JSON representing the resource.

This behaves like a dict but is actually an immutable view of
the dict.

	
resource

	The name of the Kubernetes API resource.

The resource name is used in the construction of the API
endpoint, e.g. for the API endpoint
/namespaces/default/pods/ the resource name is pods.
The resource name is identical for both the resource as well
as the resource item, e.g. both objects with PodList and
Pod as kind will have a resource name of pods.

This should be implemented as a static attribute since it
needs to be available on the class as well as on the instance.

	
spec()

	The spec of this node’s resource.

This returns a copy of the raw, decoded JSON data
representing the spec of this resource which can be used to
re-create the resource.

	
watch()

	Watch the resource item for changes.

Only changes after the current version will be part of the
iterator. However it can not be guaranteed that every
change is returned, if the current version is rather old some
changes might no longer be available.

	Returns:	An iterator of kube.WatchEvents instances
for the resource item.

	Raises:	kube.APIError – For errors from the k8s API server.

Kind

All API Objects in Kubernetes have a kind. The kind is represented as
an enum instance where both the associated name and value matches the
string used to describe the kind on the Kubernetes JSON API.

	
class kube.Kind

	
	
DaemonSet

	

	
DaemonSetList

	

	
Deployment

	

	
DeploymentList

	

	
Node

	

	
NodeList

	

	
Namespace

	

	
NamespaceList

	

	
Pod

	

	
PodList

	

	
ReplicaSet

	

	
ReplicaSetList

	

	
ReplicationController

	

	
ReplicationControllerList

	

	
Service

	

	
ServiceList

	

	
Secret

	

	
SecretList

	

ObjectMeta

Each instance of a concrete ItemABC class represents the
metadata of the resource item in a kube.ItemABC.meta
attribute. This attribute is always an instance of this
ObjectMeta class to provide convenient access to the
metadata. You would not normally create an instance manually.

	
class kube.ObjectMeta(resource)

	Common metadata for API objects.

	Parameters:	resource (kube._base.ItemABC) – The object representing the Kubernetes resource which
this metadata describes.

	
created

	The created timestamp as a datetime.datetime instance.

	
labels

	The labels as a ResourceLabels instance.

	
link

	A link to the resource itself.

This is currently an absolute URL without the hostname, but
you don’t have to care about that. The
kube.APIServerProxy will be just fine with it as it’s
path argument.

	
name

	The name of the object.

	
namespace

	Namespace the object resides in, or None.

	
uid

	The Universal ID of the item.

This is unique for this resource kind.

	
version

	The opaque resource version.

ResourceLabels

This class is a collections.abc.Mapping of the labels applied
to a resource item. It is not created manually but instead accessed
via the ObjectMeta class.

Manipulation of the labels is supported using explicit method calls.

	
class kube.ResourceLabels(resource)

	The labels applied to an API resource item.

This allows introspecting the labels as a normal mapping and
provides a few methods to directly manipulate the labels on the
resource item.

	
delete(key)

	Delete a label.

This will remove the label for a given key from the resource.

	Returns:	A new instance of the resource.

	Raises:	kube.APIError – If there is a problem with the API server.

	
set(key, value)

	Set a (new) label.

This will set or update the label’s value on the resource.

	Returns:	A new instance of the resource.

	Raises:	kube.APIError – If there is a problem with the API server.

Nodes

NodeView

	
class kube.NodeView(cluster, namespace=None)

	View of all the Node resource items in the cluster.

	Parameters:	
	cluster (kube.Cluster) – The cluster instance.

	namespace (NoneType) – Limit the view to resource items in this
namespace. This is here for the kube.ViewABC
compatibility but can not be used for the NodeList resource. A
kube.NamespaceError is raised when this is not
None.

	Raises:	kube.NamespaceError – If instantiated using a namespace.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

	cluster – The kube.Cluster instance.

	
fetch(name, namespace=None)

	Retrieve an individual node by name.

This returns the current verison of the resource item.

	Parameters:	
	name (str) – The name of the node to retrieve.

	namespace (str) – Must be None or a
kube.NamespaceError is raised. Here only for
compatibility with the ABC.

	Returns:	A single kube.NodeItem instance.

	Raises:	
	LookupError – If the node does not exist.

	kube.APIError – For errors from the k8s API server.

	kube.NamespaceError – If a namespace is used.

NodeItem

	
class kube.NodeItem(cluster, raw)

	A node in the Kubernetes cluster.

See http://kubernetes.io/docs/admin/node/ for details.

	Parameters:	
	cluster (kube.Cluster) – The cluster this node belongs to.

	raw (pyrsistent.PMap) – The raw data of the resource item.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

	
addresses

	An iterator of the addresses for this node.

Each address is a namedtuple with (type, addr) as fields.
Known types are in the kube.AddressType enumeration.

An empty list is returned if there are not yet any addresses
associated with the node.

According to the K8s API spec (and K8s code) the node address
array may contain addresses of the types defined by
kube.AddressType. The Hostname address type, while unlikely,
may present itself for certain cloud providers and will contain a
hostname string, not an IP address.

	
capacity

	The capacity of the node.

CPU is expressed in cores and can use fractions of cores,
while memory is expressed in bytes.

	
conditions

	List of conditions.

Namespaces

NamespaceView

	
class kube.NamespaceView(cluster, namespace=None)

	View of all the Namespace resource items in the cluster.

	Parameters:	
	cluster (kube.Cluster) – The cluster instance.

	namespace (NoneType) – Limit the view to resource items in this
namespace. This is here for the kube.ViewABC
compatibility, namespaces can not be used for the NamespaceList
resource. A kube.NamespaceError is raised when this
is not None.

	Raises:	kube.NamespaceError – If instantiated using a namespace.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

	
fetch(name, namespace=None)

	Retrieve an individual Namespace resource item by name.

This returns the current version of the resource item.

	Parameters:	
	name (str) – The name of the namespace resource item to
retrieve.

	namespace (str) – Must be None or a
kube.NamespaceError is raised. Here only for
compatibility with the ABC.

	Returns:	A kube.NamespaceItem instance.

	Raises:	
	LookupError – If the namespace does not exist.

	kube.APIError – For errors from the k8s API server.

	kube.NamespaceError – If a namespace is used.

NamespaceItem

	
class kube.NamespaceItem(cluster, raw)

	A namespace in the Kubernetes cluster.

See http://kubernetes.io/docs/admin/namespaces/ for details.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

	NamespacePhase – Convenience alias of NamespacePhase.

	
class NamespacePhase

	Enumeration of all possible namespace phases.

This is aliased to NamespaceResource.NamespacePhase
for convenience.

	
NamespaceItem.delete()

	Delete the namespace resource item.

For Namespace deletion K8s may have some work to do and could
return a 409 (Conflict) instead of a 404 (Not Found) when a
subsequent delete call occurs while status is trying to catch
up with spec. We hide this idiosyncrasy from the kube user.

	Return type:	None

	Raises:	APIError – For errors from the k8s API server.

	
NamespaceItem.phase

	Phase of the namespace as a kube.NamespacePhase.

ReplicaSets

ReplicaSetView

	
class kube.ReplicaSetView(cluster, namespace=None)

	View of the ReplicaSet resource items in the cluster.

	Parameters:	
	cluster (kube.Cluster) – The cluster instance.

	namespace (str) – Limit the view to resource items in this
namespace.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

ReplicaSetItem

	
class kube.ReplicaSetItem(cluster, raw)

	A ReplicaSet in the Kubernetes cluster.

A ReplicaSet, formerly known as a ReplicationController, is
responsible for keeping a desired number of pods running.

	Parameters:	
	cluster (kube.Cluster) – The cluster this ReplicaSet exists in.

	raw (pyrsistent.PMap) – The raw data of the resource item.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

	
available_replicas

	The number of available replicas (ready for at least
minReadySeconds) for the ReplicaSet.

	
fully_labeled_replicas

	Number of pods which have an exact matching set of labels.

This counts the pods which have the exact same set of labels
as the labelselector of this replicaset.

	
observed_generation

	The (integer) generation of the ReplicaSet.

	
observed_replicas

	The current number of replicas observed.

	
ready_replicas

	The number of ready replicas for the ReplicaSet.

ReplicationControllers

ReplicationControllerView

	
class kube.ReplicationControllerView(cluster, namespace=None)

	View of the Replication Controller resource items in the cluster.

	Parameters:	
	cluster (kube.Cluster) – The cluster instance.

	namespace (str) – Limit the view to resource items in this
namespace.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

ReplicationControllerItem

	
class kube.ReplicationControllerItem(cluster, raw)

	A Replication Controller in the Kubernetes cluster.

A ReplicationController, is responsible for keeping a desired number of
pods running.

	Parameters:	
	cluster (kube.Cluster) – The cluster this Replication Controller exists in.

	raw (pyrsistent.PMap) – The raw data of the resource item.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

	
available_replicas

	The number of available replicas (ready for at least
minReadySeconds) for the ReplicaSet.

	
fully_labeled_replicas

	Number of pods which have an exact matching set of labels.

This counts the pods which have the exact same set of labels
as the labelselector of this replication controller.

	
observed_generation

	The (integer) generation of the ReplicaSet.

	
observed_replicas

	The current number of replicas observed.

	
ready_replicas

	The number of ready replicas for the ReplicaSet.

Daemonsets

DaemonsetView

	
class kube.DaemonSetView(cluster, namespace=None)

	View of the DaemonSet resource items in the cluster.

	Parameters:	
	cluster (kube.Cluster) – The cluster instance.

	namespace (str) – Limit the view to resource items in this
namespace.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

DaemonsetItem

	
class kube.DaemonSetItem(cluster, raw)

	A DaemonSet in the Kubernetes cluster.

A Daemon Set ensures that all (or some) nodes run a copy of a pod.

	Parameters:	
	cluster (kube.Cluster) – The cluster this DaemonSet exists in.

	raw (pyrsistent.PMap) – The raw data of the resource item.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

	
current_number_scheduled

	The number of nodes that are running at least 1 daemon pod.

The count is of those nodes that are running at least one daemon
pod and that are supposed to run the daemon pod.

	
desired_number_scheduled

	The total number of nodes that should be running the daemon pod.

This includes nodes correctly running the daemon pod.

	
number_misscheduled

	Number of nodes running the daemon pod, but not supposed to be.

	
number_ready

	The number of nodes that have one or more of the daemon pod ready.

Nodes counted are those that should be running the daemon pod and
have one or more of the daemon pod running and ready.

Deployments

DeploymentView

	
class kube.DeploymentView(cluster, namespace=None)

	View of the Deployment resource items in the cluster.

	Parameters:	
	cluster (kube.Cluster) – The cluster instance.

	namespace (str) – Limit the view to resource items in this
namespace.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

DeploymentItem

	
class kube.DeploymentItem(cluster, raw)

	A Deployment in the Kubernetes cluster.

A Deployment provides declarative updates for Pods and Replica Sets.

	Parameters:	
	cluster (kube.Cluster) – The cluster this Deployment exists in.

	raw (pyrsistent.PMap) – The raw data of the resource item.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

	
available_replicas

	Number of available pods ready for at least minReadySeconds.

	
observed_generation

	The (integer) generation of the Deployment.

	
observed_replicas

	Total number of non-terminated pods targeted by this deployment.

	
unavailable_replicas

	Total number of unavailable pods targeted by this deployment.

	
updated_replicas

	Nr. of non-terminated pods targeted with desired template spec.

Pods

PodView

	
class kube.PodView(cluster, namespace=None)

	View of the Pod resource items in the cluster.

	Parameters:	
	cluster (kube.Cluster) – The cluster instance.

	namespace (str) – Limit the view to resource items in this
namespace.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

PodItem

	
class kube.PodItem(cluster, raw)

	A pod in the Kubernetes cluster.

Each pod contains a number of containers and volumes which are executed
on a node within the cluster. A pod may exist in a namespace. Pods are
typically managed by a controller such as a replication controller or
job.

	Parameters:	
	cluster (kube.Cluster) – The cluster this pod exists in.

	raw (pyrsistent.PMap) – The raw data of the resource item.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

	PodPhase – Convenience alias of PodPhase.

	
class PodPhase

	Enumeration of all possible pod phases.

This is aliased to Pod.PodPhase for convenience.

	
PodItem.containers

	Iterate over all Container instances in the pod.

	
PodItem.host_ip

	IP address of the pod’s host within the cluster.

This may be as a ipaddress.IPv4Address or a
ipaddress.IPv6Address.

	Raises:	kube.StatusError – If this status item is not present.

	
PodItem.ip

	IP address of the pod within the cluster.

This may be as a ipaddress.IPv4Address or a
ipaddress.IPV6Address.

	Raises:	kube.StatusError – If this status item is not present.

	
PodItem.message

	Human readable message explaining the pod’s state.

	Raises:	kube.StatusError – If this status item is not present.

	
PodItem.phase

	Phase of the pod as a kube.PodPhase.

	Raises:	kube.StatusError – If this status item is not present.

	
PodItem.reason

	PascalCase string explaining the pod’s state.

	Raises:	kube.StatusError – If this status item is not present.

	
PodItem.start_time

	Start the pod was started as a datetime.datetime.

	Raises:	kube.StatusError – If this status item is not present.

Container

	
class kube.Container(pod, raw)

	A container inside a pod.

Containers live inside a pod and may be restarted inside this pod
as controlled by the restart policy set on the pod.

	Parameters:	
	pod (PodItem) – The pod the container is part off.

	raw (pyrsistent.PMap) – The JSON-decoded object describing the status of the
container.

	Variables:	
	pod – The PodItem instance the container is bound to.

	raw – The raw JSON-decoded object representing the container.

	
id

	The ID of the running container.

For Docker this is in the docker://<hex_id> format.

	
image

	The image the container is running.

For Docker this is normally the repository name with tag
appended.

	
image_id

	The ImageID of the container’s image.

For Docker this is in the docker://<hex_id> format.

	
last_state

	Previous state of the container, if known.

This is represented by a ContainerState instance.

	Raises:	kube.StatusError – If this status item is not present.

	
name

	The name of the container as a string.

	
ready

	Boolean indicating if the container passed it’s readyness probe.

	Raises:	kube.StatusError – If this status item is not present.

	
restart_count

	The number of times the container was restarted as an integer.

Note that this is currently not always accurate, it counts the
number of dead containers which have not yet been removed.
This means the gargage collection of containers caps this
number at 5.

	
state

	Current state of the container.

This is represented by a ContainerState instance.

	Raises:	kube.StatusError – If this status item is not present.

ContainerState

	
class kube.ContainerState(raw)

	The state of a container within a pod.

A container can be in one of three states: running, waiting or
terminated. This class provides a uniform interface to all
states and their associated details. Not all fields are always
valid for each state so they can all raise an
kube.StatusError when they are not available or not
applicable.

The overall state of the container is available both as a string
in the state attribute as well as booleans in the
waiting, running and terminated
attributes.

	Parameters:	raw (pyrsistent.PMap) – The raw JSON-decoded v1.ContainerState API object
as exposed by v1.ContainerStatus objects.

	Variables:	raw – The raw JSON-decoded object representing the container state.

	
container_id

	The container ID of the terminated container.
Available for the terminated state.

	Raises:	kube.StatusError – When this is not provided.

	
exit_code

	Exit code of the container (int).

Available for the terminated state.

	Raises:	kube.StatusError – When this is not provided.

	
finished_at

	The time the container was terminated (datetime.datetime).

Available for the terminated state.

	Raises:	kube.StatusError – When this is not provided.

	
message

	Message regarding the container’s state (str).

Available for waiting and terminated states.

	Raises:	kube.StatusError – When this is not provided.

	
reason

	Brief reason explaining the container’s state (str).

This is normally a CamelCased message ID.

Available for waiting and terminated states.

	Raises:	kube.StatusError – When this is not provided.

	
running

	Boolean indicating if the container is running.

	
signal

	Last signal sent to the container, if known (int).

Not all terminated containers can be expected to have this.

Warning

The signal is identified numerically, however these signal
numbers are not portable therefore it’s ill-advised to attempt
to compare this value with the constants provided by the
built-in singal module.

Available for the terminated state.

	Raises:	kube.StatusError – When this is not provided.

	
started_at

	The time the container was started or restarted (datetime.datetime).

Available for the running state.

	Raises:	kube.StatusError – When this is not provided.

	
terminated

	Boolean indicating if the container has been terminated.

	
waiting

	Boolean indicating if the container is waiting.

Services

ServiceView

	
class kube.ServiceView(cluster, namespace=None)

	View of the Service resource items in the cluster.

	Parameters:	
	cluster (kube.Cluster) – The cluster instance.

	namespace (str) – Limit the view to resource items in this
namespace.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

ServiceItem

	
class kube.ServiceItem(cluster, raw)

	A Service in the Kubernetes cluster.

	Parameters:	
	cluster (kube.Cluster) – The cluster this Service exists in.

	raw (pyrsistent.PMap) – The raw data of the resource item.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

	
loadbalancer_ingress

	The load balancer ingress endpoints.

This is a set of ingress endpoints in use by the
load balancer. Depending on the infrastructure the cluster
runs on the endpoint can be either an
ipaddress.IPv4Address, ipaddress.IPv6Address
or a hostname as a string.

Secrets

SecretView

	
class kube.SecretView(cluster, namespace=None)

	View of the Secret resource items in the cluster.

	Parameters:	
	cluster (kube.Cluster) – The cluster instance.

	namespace (str) – Limit the view to resource items in this
namespace.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

SecretItem

	
class kube.SecretItem(cluster, raw)

	A Secret in the Kubernetes cluster.

	Parameters:	
	cluster (kube.Cluster) – The cluster this Service exists in.

	raw (pyrsistent.PMap) – The raw data of the resource item.

	Variables:	
	kind – The kind of the underlying Kubernetes resource item.

	resource – The name of the Kubernetes API resource.

	SecretType – Shortcut to kube.SecretType.

	
class SecretType

	Enumeration of secret types.

	
SecretItem.data

	A mapping of the secret data.

A copy of the secret data as a dict. The keys are the names
of the secrets as a (unicode) string, while the values are the
secrets as bytestrings.

Secret values are stored in a base64 encoding on the k8s
master, but this is an implementation detail that this
property takes care off for you.

	
SecretItem.spec()

	An empty dictionary.

This is supposed to be the secret resource item’s spec. But
secrets do not have a spec, so to still follow the
kube.ItemABC we return an empty dict.

	
SecretItem.type

	The type of secret.

There currently is only the “Opaque” type.

Glossary

	ReplicaSet

	Formerly a replication controller, kube hides this transition
from you and exposes this only under the
kube.ReplicaSetView and kube.ReplicaSetItem
names.

A replica set ensures a specified number of identical
Pod instances are running by starting and stopping pods
as required while watching for failed pods. See
http://kubernetes.io/docs/user-guide/replication-controller/ for
full details.

	ReplicationController

	The old name for a ReplicaSet. The main difference is
that the labelSelector for a ReplicationController can
only select equality-based label sets. See
https://kubernetes.io/docs/user-guide/replication-controller/ for
details.

	DaemonSet

	A DaemonSet ensures that all (or some) nodes run a copy of a pod. As
nodes are added to the cluster, pods are added to them. As nodes are
removed from the cluster, those pods are garbage collected. See
https://kubernetes.io/docs/admin/daemons/ for full details.

	Deployment

	A Deployment provides declarative updates for Pods and Replica Sets. You
only need to describe the desired state in a Deployment object, and
the Deployment controller will change the actual state to the desired
state at a controlled rate for you. See
https://kubernetes.io/docs/user-guide/deployments/ for full details.

	Pod

	A pod is the smallest unit to run containers in the cluster. It
is a co-located group of containers and volumes. See
http://kubernetes.io/docs/user-guide/pods/ for the full details
on pods.

	Service

	A service groups a set of pods and makes them accessible via a
single IP address and DNS name. See
http://kubernetes.io/docs/user-guide/services/ for the full
details on services.

	Secret

	A secret stores sensitive data like authentication tokens which
containers can then use. See
http://kubernetes.io/docs/user-guide/secrets/ for the full
details on secrets.

	labelSelector

	Many objects in the Kubernetes clusters have labels associated
with them. These can often be used to select a number of target
objects and there is a fairly rich selector language to target
objects using labels. See
http://kubernetes.io/docs/user-guide/labels/#label-selectors for
the full details on selectors.

 Python Module Index

 k

 		 	

 		
 k	

 	
 	
 kube	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	ADDED (kube.kube.WatchEvent attribute)

 	(kube.kube.WatchEventType attribute)

 	addresses (kube.NodeItem attribute)

 	api_paths (kube.ItemABC attribute)

 	(kube.ViewABC attribute)

 	
 	APIServerProxy (class in kube)

 	available_replicas (kube.DeploymentItem attribute)

 	(kube.ReplicaSetItem attribute)

 	(kube.ReplicationControllerItem attribute)

C

 	
 	capacity (kube.NodeItem attribute)

 	close() (kube.APIServerProxy method)

 	(kube.Cluster method)

 	(kube.ResourceWatcher method)

 	Cluster (class in kube)

 	cluster (kube.ItemABC attribute)

 	(kube.ViewABC attribute)

 	
 	conditions (kube.NodeItem attribute)

 	Container (class in kube)

 	container_id (kube.ContainerState attribute)

 	containers (kube.PodItem attribute)

 	ContainerState (class in kube)

 	create() (kube.Cluster method)

 	created (kube.ObjectMeta attribute)

 	current_number_scheduled (kube.DaemonSetItem attribute)

D

 	
 	DaemonSet

 	(kube.kube.Kind attribute)

 	DaemonSetItem (class in kube)

 	DaemonSetList (kube.kube.Kind attribute)

 	daemonsets (kube.Cluster attribute)

 	DaemonSetView (class in kube)

 	data (kube.SecretItem attribute)

 	delete() (kube.APIServerProxy method)

 	(kube.ItemABC method)

 	(kube.NamespaceItem method)

 	(kube.ResourceLabels method)

 	
 	DELETED (kube.kube.WatchEvent attribute)

 	(kube.kube.WatchEventType attribute)

 	Deployment

 	(kube.kube.Kind attribute)

 	DeploymentItem (class in kube)

 	DeploymentList (kube.kube.Kind attribute)

 	deployments (kube.Cluster attribute)

 	DeploymentView (class in kube)

 	desired_number_scheduled (kube.DaemonSetItem attribute)

E

 	
 	ERROR (kube.kube.WatchEvent attribute)

 	(kube.kube.WatchEventType attribute)

 	
 	exit_code (kube.ContainerState attribute)

F

 	
 	fetch() (kube.ItemABC method)

 	(kube.NamespaceView method)

 	(kube.NodeView method)

 	(kube.ViewABC method)

 	
 	filter() (kube.ViewABC method)

 	finished_at (kube.ContainerState attribute)

 	fully_labeled_replicas (kube.ReplicaSetItem attribute)

 	(kube.ReplicationControllerItem attribute)

G

 	
 	get() (kube.APIServerProxy method)

H

 	
 	host_ip (kube.PodItem attribute)

I

 	
 	id (kube.Container attribute)

 	image (kube.Container attribute)

 	
 	image_id (kube.Container attribute)

 	ip (kube.PodItem attribute)

 	ItemABC (class in kube)

K

 	
 	kind (kube.ItemABC attribute)

 	(kube.ViewABC attribute)

 	kindimpl() (kube.Cluster class method)

 	kube (module)

 	kube.APIError

 	
 	kube.Kind (class in kube)

 	kube.KubeError

 	kube.NamespaceError

 	kube.StatusError

 	kube.WatchEvent (class in kube)

 	kube.WatchEventType (class in kube)

L

 	
 	labels (kube.ObjectMeta attribute)

 	labelSelector

 	
 	last_state (kube.Container attribute)

 	link (kube.ObjectMeta attribute)

 	loadbalancer_ingress (kube.ServiceItem attribute)

M

 	
 	message (kube.ContainerState attribute)

 	(kube.PodItem attribute)

 	(kube.kube.APIError attribute)

 	
 	meta (kube.ItemABC attribute)

 	MODIFIED (kube.kube.WatchEvent attribute)

 	(kube.kube.WatchEventType attribute)

N

 	
 	name (kube.Container attribute)

 	(kube.ObjectMeta attribute)

 	Namespace (kube.kube.Kind attribute)

 	namespace (kube.ObjectMeta attribute)

 	(kube.ViewABC attribute)

 	NamespaceItem (class in kube)

 	NamespaceItem.NamespacePhase (class in kube)

 	NamespaceList (kube.kube.Kind attribute)

 	namespaces (kube.Cluster attribute)

 	
 	NamespaceView (class in kube)

 	next() (kube.ResourceWatcher method)

 	Node (kube.kube.Kind attribute)

 	NodeItem (class in kube)

 	NodeList (kube.kube.Kind attribute)

 	nodes (kube.Cluster attribute)

 	NodeView (class in kube)

 	number_misscheduled (kube.DaemonSetItem attribute)

 	number_ready (kube.DaemonSetItem attribute)

O

 	
 	ObjectMeta (class in kube)

 	observed_generation (kube.DeploymentItem attribute)

 	(kube.ReplicaSetItem attribute)

 	(kube.ReplicationControllerItem attribute)

 	
 	observed_replicas (kube.DeploymentItem attribute)

 	(kube.ReplicaSetItem attribute)

 	(kube.ReplicationControllerItem attribute)

P

 	
 	patch() (kube.APIServerProxy method)

 	phase (kube.NamespaceItem attribute)

 	(kube.PodItem attribute)

 	Pod

 	(kube.kube.Kind attribute)

 	PodItem (class in kube)

 	
 	PodItem.PodPhase (class in kube)

 	PodList (kube.kube.Kind attribute)

 	pods (kube.Cluster attribute)

 	PodView (class in kube)

 	post() (kube.APIServerProxy method)

 	proxy (kube.Cluster attribute)

R

 	
 	raw (kube.ItemABC attribute)

 	ready (kube.Container attribute)

 	ready_replicas (kube.ReplicaSetItem attribute)

 	(kube.ReplicationControllerItem attribute)

 	reason (kube.ContainerState attribute)

 	(kube.PodItem attribute)

 	ReplicaSet

 	(kube.kube.Kind attribute)

 	ReplicaSetItem (class in kube)

 	ReplicaSetList (kube.kube.Kind attribute)

 	replicasets (kube.Cluster attribute)

 	ReplicaSetView (class in kube)

 	
 	ReplicationController

 	(kube.kube.Kind attribute)

 	ReplicationControllerItem (class in kube)

 	ReplicationControllerList (kube.kube.Kind attribute)

 	replicationcontrollers (kube.Cluster attribute)

 	ReplicationControllerView (class in kube)

 	resource (kube.ItemABC attribute)

 	(kube.ViewABC attribute)

 	ResourceLabels (class in kube)

 	ResourceWatcher (class in kube)

 	response (kube.kube.APIError attribute)

 	restart_count (kube.Container attribute)

 	running (kube.ContainerState attribute)

S

 	
 	Secret

 	(kube.kube.Kind attribute)

 	SecretItem (class in kube)

 	SecretItem.SecretType (class in kube)

 	SecretList (kube.kube.Kind attribute)

 	secrets (kube.Cluster attribute)

 	SecretView (class in kube)

 	Service

 	(kube.kube.Kind attribute)

 	ServiceItem (class in kube)

 	
 	ServiceList (kube.kube.Kind attribute)

 	services (kube.Cluster attribute)

 	ServiceView (class in kube)

 	set() (kube.ResourceLabels method)

 	signal (kube.ContainerState attribute)

 	spec() (kube.ItemABC method)

 	(kube.SecretItem method)

 	start_time (kube.PodItem attribute)

 	started_at (kube.ContainerState attribute)

 	state (kube.Container attribute)

 	status_code (kube.kube.APIError attribute)

T

 	
 	terminated (kube.ContainerState attribute)

 	
 	type (kube.SecretItem attribute)

U

 	
 	uid (kube.ObjectMeta attribute)

 	unavailable_replicas (kube.DeploymentItem attribute)

 	
 	updated_replicas (kube.DeploymentItem attribute)

 	urljoin() (kube.APIServerProxy method)

V

 	
 	version (kube.ObjectMeta attribute)

 	
 	ViewABC (class in kube)

W

 	
 	waiting (kube.ContainerState attribute)

 	watch() (kube.APIServerProxy method)

 	(kube.ItemABC method)

 	(kube.ViewABC method)

 _static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Kube: Pythonic Kubernetes API Wrapper

 		Quickstart

 		Cluster

 		Views and Items

 		Installation

 		Dependencies

 		Concepts and Terminology

 		Kubernetes API concepts from 10,000 feet

 		How Kube maps these concepts

 		Views and Items

 		How Kube handles Kubernetes API versions

 		Additional Terminology

 		Cluster

 		API object

 		Object Metadata

 		Global Views

 		Node

 		Namespace

 		Replication Controller

 		ReplicaSet

 		Daemonset

 		Deployment

 		Pod

 		Container

 		Service

 		Secret

 		Watching for changes

 		Clusters

 		Resource Views and Resource Items

 		Using Resource Labels

 		Using Resource Filters

 		Using Resource Watchers

 		Testing Kube

 		API Reference

 		Exceptions

 		Cluster

 		APIServerProxy

 		Resources Interface

 		ViewABC

 		ResourceWatcher

 		WatchEvent

 		WatchEventType

 		Resource Items Interface

 		ItemABC

 		Kind

 		ObjectMeta

 		ResourceLabels

 		Nodes

 		NodeView

 		NodeItem

 		Namespaces

 		NamespaceView

 		NamespaceItem

 		ReplicaSets

 		ReplicaSetView

 		ReplicaSetItem

 		ReplicationControllers

 		ReplicationControllerView

 		ReplicationControllerItem

 		Daemonsets

 		DaemonsetView

 		DaemonsetItem

 		Deployments

 		DeploymentView

 		DeploymentItem

 		Pods

 		PodView

 		PodItem

 		Services

 		ServiceView

 		ServiceItem

 		Secrets

 		SecretView

 		SecretItem

 		Glossary

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

